Search results for "state complexity"

showing 7 items of 7 documents

The Average State Complexity of the Star of a Finite Set of Words Is Linear

2008

We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.

Uniform distribution (continuous)ComputationStar (game theory)0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsInteger0202 electrical engineering electronic engineering information engineeringTime complexityFinite setMathematicsstar operationDiscrete mathematicsaverage case analysistate complexity16. Peace & justiceBinary logarithm[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]automatonState complexity010201 computation theory & mathematicsfinite language020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2021

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.

Discrete mathematicsState complexityComputer Science::Logic in Computer ScienceComputer Science (miscellaneous)Probabilistic logicAffine transformationComputer Science::Computational ComplexityComputer Science::Artificial IntelligenceUnitary stateComputer Science::DatabasesMathematicsZero errorInternational Journal of Foundations of Computer Science
researchProduct

The average state complexity of rational operations on finite languages is linear

2010

Considering the uniform distribution on sets of m non-empty words whose sum of lengths is n, we establish that the average state complexities of the rational operations are asymptotically linear.

finite languages regular operations automata state complexity average case analysisSettore INF/01 - Informatica
researchProduct

Counting with Probabilistic and Ultrametric Finite Automata

2014

We investigate the state complexity of probabilistic and ultrametric finite automata for the problem of counting, i.e. recognizing the one-word unary language \(C_n=\left\{ 1^n \right\} \). We also review the known results for other types of automata.

Discrete mathematicsFinite-state machineState complexityUnary languageProbabilistic logicQuantum finite automataNonlinear Sciences::Cellular Automata and Lattice GasesUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsAutomaton
researchProduct

Jauni ieskati kvantu automātu stāvokļu skaita efektivitātē

2022

Kvantu galīgi automāti var sasniegt eksponenciālu stāvokļu skaitu efektivitāti, salīdzinot ar determinētiem galīgiem automātiem. Viena problēma, kurā ir zināms, ka kvantu galīgiem automātiem ir eksponenciālas priekšrocības, ir MODn problēma, taču nav zināma metode, kā uzkonstruēt tādu kvantu automātu. Šajā darbā eksponenciāli efektīvie MODn algoritmi tiek vispārināti jaunā algoritmā, kas samazina vajadzīgo stāvokļu skaitu. Jaunā algoritma saaistības ar esošiem virzieniem literatūrā tiek aprakstītas, un tiek piedāvātas divas jaunas skaitļu virknes, kuras varētu izmantot, lai uzkonstruētu tādus kvantu automātus.

discrete Fourier transformDatorzinātnegroup theoryquantum finite automatastate complexitydiscrepancy theory
researchProduct

Transition Function Complexity of Finite Automata

2019

State complexity of finite automata in some cases gives the same complexity value for automata which intuitively seem to have completely different complexities. In this paper we consider a new measure of descriptional complexity of finite automata -- BC-complexity. Comparison of it with the state complexity is carried out here as well as some interesting minimization properties are discussed. It is shown that minimization of the number of states can lead to a superpolynomial increase of BC-complexity.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESState complexityFinite-state machineTheoretical computer scienceGeneral Computer ScienceComputer scienceTransition functionValue (computer science)MinificationMeasure (mathematics)Computer Science::Formal Languages and Automata TheoryAutomatonBaltic Journal of Modern Computing
researchProduct

Complexity of operations on cofinite languages

2010

International audience; We study the worst case complexity of regular operation on cofinite languages (i.e., languages whose complement is finite) and provide algorithms to compute efficiently the resulting minimal automata.

Nested wordTheoretical computer scienceSettore INF/01 - Informaticaautomata[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]regular operationReDoSComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciences02 engineering and technologyDescriptive complexity theorystate complexity01 natural sciencesComplement (complexity)Deterministic finite automaton010201 computation theory & mathematicsTheory of computation0202 electrical engineering electronic engineering information engineeringComputer Science::Programming LanguagesQuantum finite automata020201 artificial intelligence & image processingNondeterministic finite automatoncofinite languageMathematics
researchProduct